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Abstract

In this paper we present a new probabilistic “paradox” involving the Bayes theorem.
The resolution of the paradox is elementary, but it has some subtly features due to the
fine tuning of the integer values used in order to develop the working mechanism of
the story. The author anticipates the “paradox” itself worth some attention because it
seams to shed a light on several important issues, including the way sometimes precise
information can be gained from highly uncertain data.
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Probabilistic paradoxes continue to challenge the
today’s mathematical literature. For example a para-
dox so simple as the Two-envelope problem has a very
large literature, see for example the survey article [8],
which includes treatment of some philosophical as-
pects, too. The paradox is the following. A player
must make a choice between two envelopes, one con-
taining twice as much money as the other. After see-
ing the content of the chosen envelope, the player is
offered the opportunity to exchange it for the other en-
velope. Depending on the way we compute the ex-
pected gain, switching may seem advantageous or not
advantageous.

The internet page [1] contains a list of well known
paradoxes, including the Monty Hall Problem, too.
This problem – though very simple – is often cited in
connection with the catch which can arise as counter-
intuitive consequence of the conditional probability.

On the road toward the conditional probabilities the
first paradox is the division paradox, first published in
Venice in 1494 by Fra Luca Paccioli (see [9]). The cor-
rect solution of this problem was given only in 1654 by
Pascal and Fermat, independently of each other. The
problem says that two players are playing a fair game
for a prize money, and they agreed that whoever wins
6 round first, gets the whole prize. Suppose the game
is interrupted when the first player has won 5 and the
second player has won 3 rounds. How should the prize
be divided fairly among the two players? Is correct
to divide the prize in the rate of the round wins, 5:3?

Tartaglia suggested a division in the rate 2:1. His argu-
ment was that the first player won 2 more rounds then
the second one, which is 1/3 of the whole number of
6 rounds, so he deserve 1/3 of the prize. The rest of
2/3 of the prize obviously has to be divided equally,
hence the ratio of 2:1 of the prize division. However
the correct answer and the fair ratio is 7:1 (see also [3]
and [7]).

Paradoxes arrive already in connection with the
product rule of probabilities, i.e. in connection with
the notion of independence of events. Two events
A and B are independent exactly when the probabil-
ity of the event A ∩ B (i.e. both events occur) is
the product of the probabilities of events A and B,
p(a ∩ B) = p(A) · p(B). The paradox of indepen-
dence says that if we toss two coins – a red and a blue
one – and denote A the event the red coin falls head,
B the event the blue coin falls head, and C the event
one, and only one coin falls head, then A, B, and C
are pairwise independent but any two of them deter-
mine the third one. The resolution of this paradox is
that pairwise independence do not mean global inde-
pendence, i.e. the product rule do not extends for three
or more events under the assumption of only the pair-
wise independence of the events (see also [4],[6] and
[10]).

There exists also a whole book on the probabilistic
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paradoxes, [9]. The book contains problems that can
be considered as probabilistic paradoxes in a broder
sens, such as problems with highly counterintuitive so-
lutions. Our problem – in the author’s opinion – de-
serve the standard of such a “paradox”. It is on the
way along the paradoxes if independence and the con-
ditional probabilities, and it speculates some subtleties
related to the Bayes theorem.

Let us present the paradox itself (it was inspired by
[2]).

1 The paradox

A taxicab is involved in an accident, in a city at
nighttime . The only witness declares that the taxicab
was red-colored. In the city there are 85% red and
15% green taxicabs. The insurance company claims
a sight-test for the witness, and therefore he is tested
by showing him photos of red and green colored taxi-
cabs for short time, checking his ability to recognize
the proper color. Surprisingly, it is found out that he
correctly recognizes only 80% of the colors, as in 20%
of test cases he mixes up colors, saying the cab is red
when it is actually green or vice-versa. As a detail, it
is established that the green color is viewed as red in
no more then 20% of the test cases.

On the other hand the lawyer of the insurance com-
pany claims at least 95% certainty, consequently the
company refuses to pay the damage.

The aggrieved party brings a suit against the com-
pany, so the judge orders a precise analysis of these
data. An independent expert (a mathematician of
course) makes the appropriate computations and con-
cludes that if we assume the witness’s statement, then
the cab was red colored with a probability of at least
95%!

Question A. How did the expert come to this con-
clusion?

It is understandable that the advocate of the insur-
ance company did not accept the expert’s report. He
had multiple arguments. First he discovered in the
meantime that the data used in the computation are not
quite accurate: as a matter of fact in the city there are
only 84% of red, 13% of green and in addition to these
a 3% of blue colored taxicabs, too. More importantly,
he claimed that the witness is probably colorblind, as
he often mixes up the red and green colors. And fi-
nally, he pointed out that due to the high amount of the
money which would be paid for the damage, the com-
pany’s rules demand a much higher trustiness, more
exactly at least 99% reliability of the red color, based
on the witness’s statement. Consequently, a more ac-
curate color test is needed, which must check the blue
color, too.

A new, more detailed color sight-test is performed,
and the hunch of the advocate seems to be sustained
by its outcome. The witness can be thought without

doubt as being colorblind: the red color is correctly
identified by him even less, in only 77% of test cases,
and even worth, the green color is misidentified as red
in 3% of cases and also the blue color is viewed as red
in 8% of test cases!

The new test data are passed to the expert. He
makes some new evaluations and declares two things.
Firstly, the new test results accurately reconfirm the
conclusion of the first test. Secondly, if we accept the
testimony of the witness – which was an adjuration –
then it can be declared that the cab was a red one, with
more than 99% probability!

Question B. Is the expert right again?

The lawyer was disappointed and puzzled, but he
said he had to accept the facts proved by the calcula-
tions. One last time he took a look at the test results,
and stuck his eyes on the data, according to which the
witness could hardly perceive the blue color, since he
only identified it correctly in 10% of test cases! He
remarked accordingly, that if the witnesses had sensed
a blue taxi, then certainly it would have been easy to
prove the wrong perception, and would have won the
trial. On the contrary - the expert informed - if in the
witness’s affidavit had contained a statement about a
blue taxi, then with the full 100% of confidence level,
we would have known that the taxi that caused the ac-
cident was a blue one!

Question C. How is this possible?

2 Some preliminaries and notations

Let us recall quickly some computational rules of
the probabilities and also the Bayes theorem.

Let A and B be two events, and let A ∩ B the
event that both A and B take place. Then if we de-
note the probability of event A and B by p(A) and
p(B) respectively, the probability of the event A ∩ B
by p(A ∩B), then

p(A|B) =
p(A ∩B)

p(B)

is the so called conditional probability of A with re-
spect to the event (hypothesis) B, which measures the
probability of the event A assuming the event B oc-
curred. If two out of the three probabilities in the
above relation are known, or can be computed, then
the third one can be computed, too. Also from this
relation it follows the product rule

p(A ∩B) = p(B)p(A|B) = p(A)p(B|A).

Let us consider a complete set (H1, H2, . . . ,Hn) of
events, that is a set of events which are mutually
incompatible (i.e. Hi ∩ Hj =“impossible”, i 6=
j) and collectively exhaustive (H1 ∪ H2 ∪ . . . ∪
Hn =“certain”). They are intended to be viewed as
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some hypothesises that can have probabilistic influ-
ences on the event A. If these influences can a pri-
ori be evaluated through the conditional probabilities
p(A|Hi), then – and this is the essence of the Bayes
Theorem – we can evaluate the a posteriori probabilis-
tic “contribution” of the hypothesis Hi for the event A
to occur, as

p(Hi|A) =
p(Hi)p(A|Hi)

p(A)
,

where the denominator is the probability of A,

p(A) = p(H1)p(A|H1) + . . .+ p(Hn)p(A|Hn).

Now let us introduce some notations. We denote by

R the car was Red colored
G the car was Green colored
B the car was Blue colored
Rp the car was Perceived as being Red colored
Gp the car was Perceived as Green colored
Bp the car was Perceived as Blue colored
C the witness perceived the colors Correctly
W the witness perceived the colors Wrongly

The probabilities p(R), p(G), p(B) are known
through the distribution of colors among the taxicabs
in the city, and the conditional probabilities of type
p(Rp|R), p(Rp|G), . . . are given by the sight-tests of
the witness.

It is clear that the task is to evaluate the conditional
probability p(R|Rp).

3 The paradox explained

The answer to the Question A.
In order to answer the first question, let us denote

by a the unknown probability the witness perceive a
red car as a red one, which is the conditional probabil-
ity p(Rp|R) and similarly by b the probability to per-
ceive a green car as a red one, which is the conditional
probability p(Rp|G). Then we have the table

Rp Gp

R a 1− a

G b 1− b

Our aim is to compare the red-green car distribu-
tion with the correct-wrong color perception, which is
shown in the next figure.

Perceived Correctly/WrongCar colors Red/Green

85%

15%

80%

20%

<3%

The car is perceived correctly either if it is red and
perceived red or it is green and is perceived green.

C = (R ∩Rp) ∪ (G ∩Gp). (1)

Similarly the car is perceived wrong either if it is
red but (i.e. and) is perceived green or it is green but
(i.e. and) is perceived red.

W = (R ∩Gp) ∪ (G ∩Rp). (2)

Hence we have the next two equations:

p(C) = p(R)p(Rp|R) + p(G)p(Gp|G) (3)
p(W ) = p(G)p(Rp|G) + p(R)p(Gp|R). (4)

Substituting the values of probabilities, we have

85 · a+ 15 · (1− b) = 80 (5)
15 · (1− a) + 85 · b = 20 (6)

These are not independent equations, each one is a
consequence of the other, so we have one free param-
eter. Now, the car was red assuming it was perceived
red, with the probability:

p(R|Rp) =
p(R ∩Rp)

p(Rp)
=

p(R)p(Rp|R)

p((Rp ∩R) ∪ (Rp ∩G))
=

=
p(R)p(Rp|R)

p(Rp ∩R) + p(Rp ∩G)
=

=
p(R)p(Rp|R)

p(R)p(Rp|R) + p(G)p(Rp|G)
=

=
0.85a

0.85a+ 0.15b
=

=
0.80− 0.15(1− b)

0.80− 0.15(1− b) + 0.15b
=

=
0.65 + 0.15b

0.65 + 0.30b
(7)

This is a decreasing function of b on the interval [0, 1],
starting from 1 for b = 0. We know that b ≤ 0.20 so
the smallest value of this conditional probability is for
b = 0.20, which is 0.957746, so we have

p(R|Rp) > 0.95.

The question A is answered.
The answer to the Question B.
If we denote by p(Rp|R), p(Rp|G), p(Rp|B) the

conditional probabilities that a car is perceived as a
red one, while it is red, green and blue respectively,
the new data show us that

p(Rp) =

= p((Rp ∩R) ∪ (Rp ∩G) ∪ (Rp ∩B)) =

= p(Rp ∩R) + p(Rp ∩G) + p(Rp ∩B)) =

= p(R)p(Rp|R) + p(G)p(Rp|G) + p(B)p(Rp|B)) =

= 0.84 · 0.77 + 0.13 · 0.03 + 0.03 · 0.08 =

= 0.6531

(8)
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which implies

p(R|Rp) =
p(R ∩Rp)

p(Rp)
=

=
p(R)p(Rp|R)

p(Rp)
=

=
0.84 · 0.77
0.6531

=

= 0.990354 > 0.99

(9)

So, the question B is answered.
The answer to the Question C.
Every car color (red, green, or blue) can be per-

ceived as red, green, or blue, so we have a total of
nine conditional probabilities. Consequently, we have
a bigger table of conditional probabilities, containing
nine entries, which is the following one.

Rp Gp Bp

R 0.77 x 1− 0.77− x

G 0.03 y 1− 0.03− y

B 0.08 0.82 0.10

In order to answer the question we need the data of
the third column of this table. The key to reveal these
data is to use the first part of the information given in
the current section of the story: “the new test results
accurately reconfirm the conclusion of the first test”.
Let us apply the new test results for the environment
of the old test. The equations (5) and (6) become

85 · 0.77 + 15 · y = 80 (10)
15 · 0.03 + 85 · x = 20 (11)

with the exact solutions

x = 0.23 (12)
y = 0.97. (13)

Consequently the previous table becomes

Rp Gp Bp

R 0.77 0.23 0

G 0.03 0.97 0

B 0.08 0.82 0.10.

This implies

p(Bp) =

= p((Bp ∩R) ∪ (Bp ∩G) ∪ (Bp ∩B)) =

= p(Bp ∩R) + p(Bp ∩G) + p(Bp ∩B)) =

= p(R)p(Bp|R) + p(G)p(Bp|G) + p(B)p(Bp|B)) =

= 0.84 · 0.0 + 0.13 · 0.0 + 0.03 · 0.08 =

= 0.0024

(14)

which means that the conditional probability

p(B|Bp) =
B ∩Bp

p(Bp)
=

p(B)p(Bp|B)

p(Bp)
=

=
0.03 · 0.08
0.0024

= 1.0,

(15)

hence the 100% of certainty. The last question is an-
swered, too.

4 Conclusions

The “paradox” is fully explained by the above com-
putations. Our paradox expressed by a problem arising
in a quite elaborated environment is able to gradually
sharpen the “feeling of incredible”: the more the data
are slack the more the conclusion drawn is reliable.

As a conclusion is interesting to see that sometimes
it is not so simple to evaluate the reliability of a state-
ment which has a quite unsure bases in an apparent
way. The evaluation of such reliability could be a sub-
tle task and in extremis sometimes there can be ob-
tained certain information from seemingly highly un-
certain assumptions.
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